
Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2123-2128 (2014) ISSN : 0975-0290

2123

An Enhanced Intrusion Detection System for
Multitier Dynamic Web Applications

S.Sasireka1 . N.Premalatha2

1 Assistant Professor, Dr.MCET, Pollachi, Coimbatore – 641 035, INDIA, sasirekasivasamy.65@gmail.com

2 Assistant Professor, Dr.MCET, Pollachi, Coimbatore – 641 035, INDIA, prema.krnp@gmail.com

--ABSTRACT--
We present an efficient approach, a system used to detect attacks in multitiered web services and classify through
Hierarchal clustering Algorithm. Our approach can create normality models of isolated user sessions that include both the
web front-end (HTTP) and back-end (File or SQL) network transactions with respect to Data volumes and Classify them.
Implements a lightweight virtualization technique to assign each user’s web session to a dedicated container, an isolated
virtual computing environment. We use the cluster algorithm to accurately associate the web request with the subsequent
DB queries. DoubleGuard can build a causal mapping profile by taking both the webserver and DB traffic into account.
Internet services and applications have become an inextricable part of daily life, enabling communication and the
management of personal information from anywhere. To accommodate this increase in application and data complexity,
web services have moved to a multitiered design wherein the webserver runs the application front-end logic and data are
outsourced to a database or file server. In this paper, we present DoubleGuard, an IDS system that models the network
behavior of user sessions across both the front-end webserver and the back-end database. By monitoring both web and
subsequent database requests, we are able to ferret out attacks that an independent IDS would not be able to identify.
Furthermore, we quantify the limitations of any multitier IDS in terms of training sessions and functionality coverage.
We implemented DoubleGuard using an Apache webserver with MySQL and lightweight virtualization.
--

Introduction

Web services and applications have increased in both
popularity and complexity over the past few years. Daily
tasks, such as banking, travel, and social networking, are
all done via the web. Such services typically employ a
webserver front end that runs the application user
interface logic, as well as a back-end server that consists
of a database or file server. Due to their ubiquitous use
for personal and/or corporate data, web services have
always been the target of attacks. These attacks have
recently become more diverse, as attention has shifted
from attacking the front end to exploiting vulnerabilities
of the web applications in order to corrupt the back-end
database system (e.g., SQL injection attacks . A plethora
of Intrusion Detection Systems (IDSs) currently examine
network packets individually within both the webserver
and the database system. However, there is very little
work being performed on multitiered Anomaly Detection
(AD) systems that generate models of network behavior
for both web and database network interactions. In such
multitiered architectures, the back-end database server is
often protected behind a firewall while the webservers
are remotely accessible over the Internet. Unfortunately,
though they are protected from direct remote attacks, the
back-end systems are susceptible to attacks that use web
requests as a means to exploit the back end.

Intrusion Detection Systems
To protect multitiered web services, Intrusion detection
systems have been widely used to detect known attacks

by matching misused traffic patterns or signatures . A
class of IDS that leverages machine learning can also
detect unknown attacks by identifying abnormal
network traffic that deviates from the so-called
“normal” behavior previously profiled during the IDS
training phase. Individually, the web IDS and the
database IDS can detect abnormal network traffic sent
to either of them. However, we found that these IDSs
cannot detect cases wherein normal traffic is used to
attack the webserver and the database server. For
example, if an attacker with nonadmin privileges can
log in to a webserver using normal-user access
credentials, he/she can find a way to issue a privileged
database query by exploiting vulnerabilities in the
webserver. Neither the web IDS nor the database IDS
would detect this type of attack since the web IDS
would merely see typical user login traffic and the
database IDS would see only the normal traffic of a
privileged user. This type of attack can be readily
detected if the database IDS can identify that a
privileged request from the webserver is not associated
with user-privileged access. Unfortunately, within the
current multithreaded webserver architecture, it is not
feasible to detect or profile such causal mapping
between webserver traffic and DB server traffic since
traffic cannot be clearly attributed to user sessions.

Networks and their Security
 Network security consists of the provisions and
policies adopted by a network administrator to prevent
and monitor unauthorized access, misuse, modification,

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2123-2128 (2014) ISSN : 0975-0290

2124

or denial of a computer network and network-accessible
resources. Network security involves the authorization of
access to data in a network, which is controlled by the
network administrator. Users choose or are assigned an
ID and password or other authenticating information that
allows them access to information and programs within
their authority. Network security covers a variety of
computer networks, both public and private, that are
used in everyday jobs conducting transactions and
communications among businesses, government
agencies and individuals. Networks can be private, such
as within a company, and others which might be open to
public access. Network security is involved in
organizations, enterprises, and other types of institutions.
It does as its title explains: It secures the network, as
well as protecting and overseeing operations being done.
The most common and simple way of protecting a
network resource is by assigning it a unique name and a
corresponding password

Network security starts with authenticating the user,
commonly with a username and a password. Since this
requires just one detail authenticating the user name —
i.e. the password, which is something the user 'knows'—
this is sometimes termed one-factor authentication. With
two-factor authentication, something the user 'has' is also
used (e.g. a security token or 'dongle', an ATM card, or a
mobile phone); and with three-factor authentication,
something the user 'is' is also used (e.g. a fingerprint or
retinal scan).
Once authenticated, a firewall enforces access policies
such as what services are allowed to be accessed by the
network users. Though effective to prevent unauthorized
access, this component may fail to check potentially
harmful content such as computer worms or Trojans
being transmitted over the network. Anti-virus software
or an intrusion prevention system (IPS) help detect and
inhibit the action of such malware. An anomaly-based
intrusion detection system may also monitor the network
and traffic for unexpected (i.e. suspicious) content or
behavior and other anomalies to protect resources, e.g.
from denial of service attacks or an employee accessing
files at strange times. Individual events occurring on the
network may be logged for audit purposes and for later
high-level analysis.
Communication between two hosts using a network may
be encrypted to maintain privacy. Honeypots, essentially
decoy network-accessible resources, may be deployed in
a network as surveillance and early-warning tools, as the
honeypots are not normally accessed for legitimate
purposes. Techniques used by the attackers that attempt
to compromise these decoy resources are studied during
and after an attack to keep an eye on new exploitation
techniques. Such analysis may be used to further tighten
security of the actual network being protected by the
honeypot.

Multitier Web Applications
In software engineering, multi-tier architecture (often

referred to as n-tier architecture) is a client–server
architecture in which presentation, application
processing, and data management functions are logically
separated. For example, an application that uses
middleware to service data requests between a user and
a database employs multi-tier architecture. The most
widespread use of multi-tier architecture is the three-tier
architecture. N-tier application architecture provides a
model by which developers can create flexible and
reusable applications. By segregating an application into
tiers, developers acquire the option of modifying or
adding a specific layer, instead of reworking the entire
application. Three-tier architectures typically comprise a
presentation tier, a business or data access tier, and a
data tier. While the concepts of layer and tier are often
used interchangeably, one fairly common point of view
is that there is indeed a difference. This view holds that
a layer is a logical structuring mechanism for the
elements that make up the software solution, while a tier
is a physical structuring mechanism for the system
infrastructure.
There have been growing concerns in recent years that
many organizations are facing an excessive number of
layers in their multi-layered architecture. These concerns
stem from sprawling application architectures that are
not well designed or managed, in which development
teams create an ever-growing number of "wrapper"
layers that compromise maintainability. The resulting
architecture resembles a Rube Goldberg Machine that
scares organizations from solving the root cause of the
sprawling layers, resulting in the creation of more
layers.
Three-tier is a client–server architecture in which the
user interface, functional process logic ("business
rules"), computer data storage and data access are
developed and maintained as independent modules, most
often on separate platforms. It was developed by John J.
Donovan in Open Environment Corporation (OEC), a
tools company he founded in Cambridge,
Massachusetts. The three-tier model is a software
architecture and a software design pattern. Apart from
the usual advantages of modular software with well-
defined interfaces, the three-tier architecture is intended
to allow any of the three tiers to be upgraded or replaced
independently in response to changes in requirements or
technology. For example, a change of operating system
in the presentation tier would only affect the user
interface code.

Literature Review

[1] V. Jyothsna ,V. V. Rama Prasad ,K. Munivara
Prasad proposed an Anomaly-Based Intrusion Detection
System, is a system for detecting computer intrusions
and misuse by monitoring system activity and
classifying it as either normal or anomalous. The
classification is based on heuristics or rules, rather than
patterns or signatures, and will detect any type of misuse
that falls out of normal system operation. This is as
opposed to signature based systems which can only

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2123-2128 (2014) ISSN : 0975-0290

2125

detect attacks for which a signature has previously been
created This paper investigate this issue, the current state
of the experiment practice in the field of anomaly based
intrusion detection is reviewed and survey recent studies
in this.

[2] Fredrik Valeur , Giovanni Vigna, Christopher
Kruegel, Richard A. Kemmerer proposed This paper
address the issue, researchers and vendors have proposed
alert correlation, an analysis process that takes the alerts
produced by intrusion detection systems and produces
compact reports on the security status of the network
under surveillance. Although a number of correlation
approaches have been suggested, there is no consensus
on what this process is or how it should be implemented
and evaluated. In particular, existing correlation
approaches operate on only a few aspects of the
correlation process, such as the fusion of alerts that are
generated by different intrusion detection systems in
response to a single attack, or the identification of
multistep attacks that represent a sequence of actions
performed by the same attacker.

[3]. David Wagner, Drew Dean This paper focus on some
security problems are directly attributable to faulty
application logic, such as programs that fail to check
authentication information before proceeding, and one
limitation of our intrusion detection system is that it does
not detect attacks that exploit logic errors. Application
logic bugs, however, are dwarfed in practice by buffer
overflow problems and other vulnerabilities that allow
for execution of arbitrary machine code of the attacker’s
choice [8, 35], and it is the latter type of vulnerability.

[4] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha
Narula, Nickolai Zeldovich proposed this paper Users or
administrators must manually inspect the application for
signs of an attack that exploited the vulnerability, and if
an attack is found, they must track down the attacker’s
actions and repair the damage by hand. When an
administrator learns of a security vulnerability in a web
application, he or she can use WARP to check whether
that vulnerability was recently exploited, and to recover
from any resulting intrusions
An attacks can affect users’ browsers, making it difficult
to track down the extent of the intrusion purely on the
server. For example attack, when Alice (or any other
user) visits an infected Wiki page, the web server cannot
tell if a subsequent page edit request from Alice’s
browser was caused by Alice or by the malicious
JavaScript code. Yet an ideal system should revert all
effects of the malicious code while preserving any edits
that Alice made from the same page in her browser.

[5] Chris Anley research analysis discusses in detail the
common "SQL injection" technique, as it applies to the
popular Microsoft Internet Information Server/Active
Server Pages/SQL Server platform. It discusses the
various ways in which SQL can be "injected" into the

application and addresses some of the data validation
and database lockdown issues that are related to this
class of attack. The paper is intended to be read by both
developers of Web applications which communicate
with databases and by security professionals whose role
includes auditing these Web applications.

[6] K. Bai, H. Wang, and P. Liu, “Access control and
integrity constraints are well known approaches to
ensure data integrity in commercial database systems.
However, due to operational mistakes, malicious intent
of insiders or vulnerabilities exploited by outsiders, data
stored in a database can still be compromised. When the
database is under an attack, rolling back and re-
executing the damaged transactions are the most used
mechanisms during system recovery. This kind of
mechanism either stops (or greatly restricts) the database
service during repair, which causes unacceptable
availability loss or denial-of- service for mission critical
applications, or may cause serious damage spreading
during on-the-fly recovery where many clean data items
are accidentally corrupted by legitimate new
transactions. To resolve this dilemma, we devise a novel
mechanism, called database firewall in this paper. This
firewall is designed to protect good data from being
corrupted due to damage spreading. Pattern mining and
Bayesian network techniques are adopted in the
framework to mine frequent damage spreading patterns
and to predict the data integrity in the face of attack. Our
approach provides a probability based strategy to
estimate the data integrity on the fly. With this feature,
the database firewall is able to enforce a policy of
transaction filtering to dynamically filter out the
potential spreading transactions.

[7] B.I.A. Barry and H.A. Chan, proposed a Signature-
based intrusion detection systems (IDSs) have the
advantages of producing a lower false alarm rate and
using less system resources compared to anomaly based
systems. However, they are susceptible to obfuscation
used by attackers to introduce new variants of the
attacks stored in the database. Some of the
disadvantages of signature-based IDSs can be attributed
to the fact that they are mostly purely syntactic and
ignore the semantics of the monitored systems. In this
paper, we present the design and implementation of a
signature database that assists a Specification-based IDS
in a converged environment. Our design is novel in
terms of considering the semantics of the monitored
protocols alongside their syntax. Our protocol semantics
awareness is based on the state transition analysis
technique which models intrusions at a high level using
state transition diagrams. The signature database is
hierarchically designed to insure a balance between ease
of use and fast retrieval in real time. The database
prototype is tested against some implemented attacks
and shows promising efficiency.

[8]. D. Bates, A. Barth, and C. Jackson, describes a

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2123-2128 (2014) ISSN : 0975-0290

2126

Cross-site scripting flaws have now surpassed buffer
overflows as the world's most common publicly-reported
security vulnerability. In recent years, browser vendors
and researchers have tried to develop client-side filters to
mitigate these attacks. We analyze the best existing filters
and find them to be either unacceptably slow or easily
circumvented. Worse, some of these filters could
introduce vulnerabilities into sites that were previously
bug-free. We propose a new filter design that achieves
both high performance and high precision by blocking
scripts after HTML parsing but before execution.
Compared to previous approaches, our approach is faster,
protects against more vulnerabilities, and is harder for
attackers to abuse. We have contributed an
implementation of our filter design to the WebKit open
source rendering engine, and the filter is now enabled by
default in the Google Chrome browser.

[9]. M. Christodorescu and S. Jha, Malicious code
detection is a crucial component of any defense
mechanism. In this paper, we present a unique viewpoint
on malicious code detection. We regard malicious code
detection as an obfuscation-deobfuscation game between
malicious code writers and researchers working on
malicious code detection. Malicious code writers attempt
to obfuscate the malicious code to subvert the malicious
code detectors, such as anti-virus software. We tested the
resilience of three commercial virus scanners against
code-obfuscation attacks. The results were surprising: the
three commercial virus scanners could be subverted by
very simple obfuscation transformations! We present an
architecture for detecting malicious patterns in
executables that is resilient to common obfuscation
transformations. Experimental results demonstrate the
efficacy of our prototype tool, SAFE (a static analyzer for
executables).

[10]. M. Cova, D. Balzarotti, V. Felmetsger, and G.
Vigna, In recent years, web applications have become
tremendously popular, and nowadays they are routinely
used in security-critical environments, such as medical,
financial, and military systems. As the use of web
applications for critical services has increased, the
number and sophistication of attacks against these
applications have grown as well. Most approaches to the
detection of web-based attacks analyze the interaction of
a web application with its clients and back-end servers.
Even though these approaches can effectively detect and
block a number of attacks, there are attacks that cannot
be detected only by looking at the external behavior of a
web application.
In this paper, we present Swaddler, a novel approach to
the anomaly-based detection of attacks against web
applications. Swaddler analyzes the internal state of a
web application and learns the relationships between the
application's critical execution points and the
application's internal state. By doing this, Swaddler is
able to identify attacks that attempt to bring an
application in an inconsistent, anomalous state, such as

violations of the intended workflow of a web
application. We developed a prototype of our approach
for the PHP language and we evaluated it with respect to
several real-world applications.

Existing Research
Web services and applications have increased in both
popularity and complexity over the past few years. Daily
tasks, such as banking, travel, and social networking, are
all done via the web. Such services typically employ a
webserver front end that runs the application user
interface logic, as well as a back-end server that consists
of a database or file server. Due to their ubiquitous use
for personal and/or corporate data, web services have
always been the target of attacks. These attacks have
recently become more diverse, as attention has shifted
from attacking the front end to exploiting vulnerabilities
of the web applications in order to corrupt the back-end
database system (e.g., SQL injection attacks . A
plethora of Intrusion Detection Systems (IDSs) currently
examine network packets individually within both the
webserver and the database system. However, there is
very little work being performed on multitiered
Anomaly Detection (AD) systems that generate models
of network behavior for both web and database network
interactions. In such multitiered architectures, the back-
end database server is often protected behind a firewall
while the webservers are remotely accessible over the
Internet. Unfortunately, though they are protected from
direct remote attacks, the back-end systems are
susceptible to attacks that use web requests as a means
to exploit the back end.

Problem Definition
An IDS system only considers models the network
behavior of user across both the front-end webserver and
the back-end database without any clear partitioning. By
monitoring both web and subsequent database requests,
we are able to ferret out attacks that an independent IDS
would not be able to identify .The limitations of any
multitier IDS in terms of training sessions and
functionality coverage Cannot be done for all the users
in the network.

Proposed System
In this project we present a system used to detect attacks
in multitiered web services and classify through
clustering Algorithm. Our approach can create normality
models of isolated user sessions that include both the
web front-end (HTTP) and back-end (File or SQL)
network transactions with respect to Data volumes and
Classify them. The project implements a lightweight
virtualization technique to assign each user’s web
session to a dedicated container, an isolated virtual
computing environment. We use the cluster algorithm to

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2123-2128 (2014) ISSN : 0975-0290

2127

accurately associate the web request with the subsequent
DB queries.

The system build a causal mapping profile by taking both
the webserver and DB traffic into account. The system
uses a multi-tier approach which makes web applications
retain their simplicity for the user and complexity for the
attacker.
Methodology
Building the Normality Model
We deployed a static testing website using the Content
Management System. We chose to assign each user
session into a different container. We can assign a new
container per each new IP address of the client. The
container will log all the SQL Queries executed by client
in database. Deterministic Mapping and the Empty
Query Set Mapping patterns are discovered from training
sessions.

Finding Deterministic Mapping Queries

Deterministic Mapping is the most common and
perfectly matched pattern. Web request rm appears in all
traffic with the SQL queries set Qn. If Qn is present in
the session traffic without the corresponding rm is
classified as intrusion.

Finding Empty Query Set
 In special cases, the SQL query set may be the empty
set. This implies that the web request neither causes nor
generates any database queries. Ex when a web request
for retrieving an image GIF file from the same
webserver is made, a mapping relationship does not exist
because only the web requests are observed. This type of
mapping is called rm->O ;. During the testing phase, we
keep these web requests together in the set EQS

Algorithms Used
Algorithm for Intrusion Analysis
Input : Log Dataset and Training data’s(SQL)
Output : Intrusion data.

1. for each session separated traffic Ti do
2. Get different HTTP requests r and DB queries q in
 this session for each different r do
3: if r is a request to static file then
4: Add r into set EQS
5: else
6: if r is not in set REQ then
7: Add r into REQ
8: Append session ID i to the set ARr with r as the key
9: for each different q do
10: if q is not in set SQL then
11: Add q into SQL
12: Append session ID i to the set AQq with q as the
 key
13: for each HTTP request r in REQ do
14: if r has no deterministic mapping model then
15: Add r into set EQS
16: return True

Hijack Future Session Attack and Injection Attack

An attacker usually takes over the webserver and
therefore hijacks all subsequent legitimate user sessions
to launch attacks. We find hijacking other user sessions,
the attacker can eavesdrop, send spoofed replies, and/or
drop user requests.

Finding Injection Attack
Attackers can use existing vulnerabilities in the
webserver logic to inject the data or string content that
contains the exploits and then use the webserver to
relay these exploits to attack the back-end database.
This SQL injection attack changes the structure of the
SQL queries, even if the injected data were to go
through the webserver side, it would generate SQL
queries in a different structure that could be detected as
a deviation from the SQL query structure that would
normally follow such a web request.
These module contains the unique idea that compares
SQL query strings and blocks suspicious sql-query and
passes original sql-query. The classification of
Suspecious query is done by analyzing the datasets of
Original query and suspicious query. classifies learns
the dataset and according to learning procedure ,it
classifies the queries.

Example
Original query=select * from admin where uid=‟1‟;
Suspecious query=select * from admin where uid=‟ „
OR 1=1;--„
Here, original query is passed and suspicious query is
blocked.
Word-list contains the tokens of sql-query strings.
„O‟-Original query
„S‟-Suspecious query
Ex: („O‟) select * from admin where uid = „1„;
(„S‟) select * from admin where uid = „ „ OR 1=1;--„
(„O‟) select * from admin where uid =‟1‟ && pwd
=‟abc‟;
(„S‟) select * from admin where uid = „ „ OR 1=1;--„

Algorithm

Step 1. Select a reasonable amount as the training set.
Step 2. Input the SQL-Query string.
Step 3. Feed the training set into the process to

generate a model.
Step 4. Now classify the model using training dataset.
Step 5. Labeled output with O and S
Step 6. Mark S as suspicious query

Experimental Results

The user sessions are tracked by the ipaddress, date and
time of visit in container. The full details about the

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2123-2128 (2014) ISSN : 0975-0290

2128

users can be viewed by the administrator. The tracking
of the details except ipaddress is general. The ipaddress
is tracked by using the following one line code:
$ip=$_SERVER['REMOTE_ADDR']. This code is
placed in the code file to track the users who are all
visiting the web site.
The System is experimented with open source web
programming language and Database for logging PHP
& MYSQL with WAMP server in windows platform
which is a container stored in the web server and is
available in the admin end. The container file consists of
the information about the query, ipaddress, date and time
of visit. It consists of all records i.e., the information
about all the clients who are all visited the web site with
their database query. From input streams provides a
better characterization of the system for anomaly
detection because the intrusion sensor has a more precise
normality model that detects a wider range of threats.
To evaluate the detection results for the system, analyze
classes of attacks like deterministic mapping, sql
injection , empty query list and etc. When deployed a
prototype on a system that employed Apache webserver,
a cms application and a MySQL back end. The Proposed
system was able to identify a wide range of attacks with
minimal efforts

Conclusion
Intrusion detection system that builds models of normal
behavior for multi- tiered web applications from both
front-end web (HTTP) requests and back-end database
(SQL) queries. Unlike previous approaches that
correlated or summarized alerts generated by
independent IDSs, after empowering it forms a
container-based IDS with multiple input streams to
produce alerts. Such correlation of input streams
provides a better characterization of the system for
anomaly detection because the intrusion sensor has a
more precise normality model that detects a wider range
of threats.

References

[1]. C. Anley, “Advanced Sql Injection in Sql Server
Applications,” technical report, Next Generation
Security Software, Ltd., 2002.

[2]. K. Bai, H. Wang, and P. Liu, “Towards Database
Firewalls,” Proc. Ann. IFIP WG 11.3 Working
Conf. Data and Applications Security (DBSec ’05),
2005.

[3]. B.I.A. Barry and H.A. Chan, “Syntax, and
Semantics-Based Signature Database for Hybrid
Intrusion Detection Systems,” Security and Comm.
Networks, vol. 2, no. 6, pp. 457-475, 2009.

[4]. D. Bates, A. Barth, and C. Jackson, “Regular
Expressions Considered Harmful in Client-Side XSS
Filters,” Proc. 19th Int’l Conf. World Wide Web,
2010.

[5]. M. Christodorescu and S. Jha, “Static Analysis of
Executables to Detect Malicious Patterns,” Proc.
Conf. USENIX Security Symp., 2003.

[6]. M. Cova, D. Balzarotti, V. Felmetsger, and G.Vigna,
“Swaddler: An Approach for the Anomaly-Based
Detection of State Violations in Web
Applications, ” Proc. Int’l Symp. Recent Advances
in Intrusion Detection (RAID ’07), 2007.

[7]. H. Debar, M. Dacier, and A. Wespi, “Towards a
Taxonomy of Intrusion-Detection Systems,”
Computer Networks, vol. 31, no. 9, pp. 805-822,
1999.

[8]. V. Felmetsger, L. Cavedon, C. Kruegel, and G.
Vigna, “Toward Automated Detection of Logic
Vulnerabilities in Web Applications,” Proc.
USENIX Security Symp., 2010.

[9]. Y. Hu and B. Panda, “A Data Mining Approach for
Database Intrusion Detection,” Proc. ACM Symp.
Applied Computing (SAC), H. Haddad, A. micini,
R.L. Wainwright, and L.M. Liebrock, eds., 2004.

[10]. Y. Huang, A. Stavrou, A.K. Ghosh, and S. Jajodia,
“Efficiently Tracking Application Interactions Using
Lightweight Virtualization,” Proc. First ACM
Workshop Virtual Machine Security, 2008.

